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EXECUTIVE SUMMARY 
 

The Fuel Matrix Degradation (FMD) model calculates spent fuel degradation rates as a function of 
radiolysis, redox reactions, electrochemical reactions, alteration layer growth, and diffusion of reactants 
through the alteration layer (Jerden et al. 2015b). It is a complicated model requiring a large number of 
calculations and iterations at each time step. Because of this, repository simulations, which are already 
expensive, cannot directly include the FMD process model, especially when hundreds or thousands of 
waste packages breach. 

The FMD surrogate modeling work in this report was initiated based on the hypothesis that surrogate 
models can be developed from FMD process model training data to inexpensively provide accurate fuel 
matrix degradation rates in a repository simulation for each individual breached waste package in its own 
evolving environment at each time step. This report confirms that such surrogate models can be 
developed. It shows that an artificial neural network (ANN) surrogate and a k-Nearest Neighbors 
regressor (kNNr) surrogate can emulate the FMD process model with reasonable accuracy. It also 
demonstrates that these surrogates can run inexpensively in repository simulations for each breached 
waste package when there are thousands of breached waste packages.   

One of the key decisions made during development of the surrogates was to define the applicable input 
domain for the surrogates. For the FMD process model, there are seven inputs parameters: temperature, 
burnup, time out of reactor, and the local concentrations of four chemical species, CO3

2-, O2, Fe2+, and H2. 
Two ways to define the surrogate model input domain are (1) to target the ranges of the inputs for which 
the process model is valid and (2) to target the ranges of the inputs that will be used in the application of 
the surrogates. The first option provides a broad range of applicability, which can be useful when the 
actual ranges of applicability cannot be predicted. This benefit can come at a cost to accuracy because it 
can require more complicated surrogates and substantially more training data. The second option focuses 
on a subset of the process model input domain, which generally allows for improved surrogate accuracy 
within the smaller domain. The surrogate models developed in this report employed the first option.  

Prior to coupling with PFLOTRAN, the ANN and kNNr surrogates were coded for standalone operation 
using Python. Training and testing data for the surrogate model input domain were generated using the 
MATLAB code of the FMD process model. Many of the MATLAB simulations were filtered out of the 
final surrogate model training and testing dataset due to excessive run time or exceedance of limits on 
output values. Scatterplots of the remaining training and testing data were then used to reduce the input 
domains of the surrogate models to ranges that were well-interrogated. From these training data, a two-
layer ANN surrogate and a kNNr surrogate that uses 60 nearest neighbors (k=60) were developed. 

The accuracies of the standalone surrogate models were evaluated using three standard error metrics: 
mean-squared error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). 
These errors were measured on the testing data to be 3.6×10-6 (mol/m2/yr)2, 9.3×10-4 mol/m2/yr, and 31%, 
respectively, for the ANN surrogate and 5.9×10-6 (mol/m2/yr)2, 1.3×10-3 mol/m2/yr, and 78% for the kNNr 
surrogate. Significant reduction in these errors are expected to be achievable by downsizing the sampling 
and training space to input ranges expected for a given application and also by generating training data 
that are more evenly spaced within the input domain. Currently, the FMD MATLAB process model 
generates time-history training data that are densely packed in time. This is particularly troublesome for 
the kNNr surrogate and is the main reason a high number of nearest neighbors (60) was needed. Future 
optimization of the kNNr surrogate might also be achieved by thinning the time histories in the training 
data set to a smaller number of points in time. 

The ANN and kNNr FMD surrogates were successfully implemented in the master branch of 
PFLOTRAN for general use in repository simulations. Each is demonstrated in this report in two different 
example problems. The first example problem simulates 52 breached waste packages in a flow field. This 
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problem was examined because it is the same problem simulated in FY 2015 when a Fortran version of 
the FMD process model was coupled to PFLOTRAN. The time spent performing waste form calculations 
using the surrogate models was found to be extremely low compared to the time spent on flow and 
transport calculations in the same simulations. Time spent on waste form calculations using the coupled 
the FMD process model in FY 2015 was more than one thousand times greater. 

The second demonstration is a full-scale shale repository reference case simulation. Times spent on waste 
form calculations relative to the total time spent on flow and transport calculations were 0.5% and 0.6% 
for ANN and kNNr, respectively.  

Although there are upfront costs building surrogates, the demonstrations of the ANN and kNNr surrogate 
models coupled to PFLOTRAN and the standalone error analyses in this report confirm that the ANN and 
kNNr surrogates can inexpensively emulate the FMD process model in repository simulations for each 
individual breached waste package at each time step. Having the ability to emulate spent fuel degradation 
in probabilistic performance assessment simulations allows uncertainties in spent fuel dissolution to be 
propagated and sensitivities in FMD inputs to be quantified and ranked against other inputs. It is expected 
that the accuracy of the surrogates, especially for the kNNr surrogate, can be significantly improved in the 
future by targeting the ranges of application and by more evenly distributing the training data points 
within those ranges. 

This report fulfills the GDSA Framework Development Work Package Level 3 Milestone  Surrogate 
Model Development of Spent Fuel Degradation for Repository Performance Assessment, M3SF-
20SN010304044. 
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1. INTRODUCTION 
In model simulations of deep geologic repositories, UO2 fuel matrix degradation typically begins as soon 
as the waste package breaches and groundwater contacts the fuel surface. The initial degradation rate 
depends on the timing of these events, burnup of the fuel, temperature, and concentrations of dissolved 
reactants.  

Estimating the initial rate of degradation is fairly straightforward, but as UO2 corrosion products 
precipitate on the fuel surface and the movement of dissolved species between the fuel surface and 
environment is impeded by the precipitated solids, the rate is more difficult to quantify. At that point, 
calculating the degradation rate becomes a reactive-transport problem in which a large number of 
equations must be solved by iteration for a large number of grid cells at each time step. The consequence 
is that repository simulations, which are already expensive, become much more expensive, especially 
when hundreds or thousands of waste packages breach. 

The Fuel Matrix Degradation (FMD) model is the process model of the Spent Fuel and Waste Science and 
Technology (SFWST) campaign of the US Department of Energy (DOE). It calculates spent fuel 
degradation rates as a function of radiolysis, redox reactions, electrochemical reactions, alteration layer 
growth, and diffusion of reactants through the alteration layer (Jerden et al. 2015b). Like other similar fuel 
degradation process models, it is a complicated model requiring a large number of calculations and 
iterations at each time step.  

One way to reduce the cost of repository simulations that include the FMD process model is to assume 
that all UO2 in the repository (or certain sections of the repository) degrades at the same FMD process 
model rate [M L-2 T-1], adjusting for the time of waste package breach. This way, the degradation process 
model only needs to be simulated once (or once for each section of the repository). A major drawback of 
this approach, however, is that temperature and environmental concentrations of reactants can vary widely 
across the repository in both space and time. Consequently, this approach will not propagate heterogeneity 
to fuel matrix degradation rates in the simulation. A more comprehensive discussion of the drawbacks of 
this homogenizing approach is provided in Mariner et al. (2018, Section 3.2.5). 

To include the effects of spatial and temporal heterogeneity in variables influencing fuel matrix 
degradation rates in repository performance assessment (PA) simulations, a faster calculation of these 
rates is needed. The work in this report was initiated based on the hypothesis that surrogate models can be 
developed to inexpensively provide accurate degradation rates in a repository simulation for each 
individual breached waste package in its own evolving environment at each time step. 

1.1 Surrogate Modeling 
A surrogate model (sometimes called meta-model, emulator, or response surface model) is an input-to-
output mapping that replaces a more complicated simulation code. Once constructed, this meta-model is 
relatively inexpensive to evaluate so it is often used as a surrogate for the physics model in uncertainty 
propagation, sensitivity analysis, or optimization problems that may require thousands to millions of 
function evaluations (Simpson et al. 2008). 

There are many different types of surrogate models, including neural networks, regression models, radial 
basis functions, splines, etc. One popular approach in the literature is to develop an emulator that is a 
stationary smooth Gaussian process (Santner et al. 2003, Rasmussen and Williams 2006). There are many 
good overview articles that compare various meta-model strategies. Various smoothing predictors and 
nonparametric regression approaches are compared elsewhere (Santner et al. 2003, Simpson et al. 2008, 
Storlie et al. 2009). Simpson et al. (2008) provides an excellent overview not just of various statistical 
meta-model methods but also approaches that use low-fidelity models as surrogates for high-fidelity 
models.  
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Three different types of surrogate models were developed for the FMD process model: a polynomial 
regression surrogate, an artificial neural network (ANN) surrogate, and a k-Nearest-Neighbors regression 
(kNNr) surrogate (Mariner et al. 2019a, Appendix A). The polynomial and ANN surrogates are 
parametric models while the kNNr surrogate is nonparametric. In FY 2019, the ANN surrogate was found 
to be more accurate than the polynomial surrogate for this application; therefore, only the ANN and kNNr 
surrogates were pursued in FY 2020 and are presented in this report. The ANN surrogate utilizes a 
network of artificial neurons with nonlinear activation functions. The kNNr surrogate uses an advanced 
technique to interpolate between points in a multidimensional lookup table. 

1.2 Objectives 
This report is a major milestone of the FMD surrogate modeling work that began in FY 2018. Two 
surrogate models of the FMD process model, an artificial neural network (ANN) surrogate and a k-
Nearest-Neighbors regression (kNNr) surrogate, were developed and tested for speed and accuracy and 
were coupled with PFLOTRAN for use in repository PA simulations. 

The objectives of this report are to: 

 Review the motivation for developing the FMD surrogate models, 

 Describe the development and use of the surrogate models, 

 Quantify the accuracy and speed of the surrogate models, 

 Describe the coupling of the surrogate models to PFLOTRAN, 

 Demonstrate the surrogate models in a repository reference case, 

 Discuss lessons learned, and 

 Propose future improvements to the surrogate models. 

This report fulfills the GDSA Framework Development Work Package Level 3 Milestone  Surrogate 
Model Development of Spent Fuel Degradation for Repository Performance Assessment, M3SF-
20SN010304044. This report incorporates information from Mariner et al. (2018) and Mariner et al. 
(2019a). 
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2. FMD PROCESS MODEL 
The FMD process model calculates spent fuel degradation rates as a function of radiolysis, alteration layer 
growth, and diffusion of reactants through the alteration layer. This model was developed at Argonne 
National Laboratory and Pacific Northwest National Laboratory. 

Coded in MATLAB, the FMD process model incorporates two general models, a mixed potential model 
(MPM) and an analytical radiolysis model. The MPM is based on a model developed by (King and Kolar 
1999, King and Kolar 2003). It simulates interfacial electrochemical reactions and reactive transport 
processes between the fuel surface and bulk water. 

The FMD process model used in this report (and used to develop the surrogate models) is the version that 
aligns with version 2 of the MPM (Jerden et al. 2014). Hereafter, this version is called FMD V2. Version 
2 of the MPM includes NMP catalysis of redox reactions as an additional process. FMD V2 includes 
radiolysis. Radiolysis generates aqueous species, e.g., H2O2, that further augment fuel oxidation when the 
fuel surface dose rate is high.  

Starting with version 3 of MPM and FMD, steel corrosion was added to provide a source of hydrogen 
(Jerden et al. 2018). This change is not included FMD V2. Steel corrosion is excluded from this report 
because the plan for GDSA Framework is to develop separate modules for waste package and waste form 
degradation and to couple them later via user options in PFLOTRAN. 

This chapter describes the features and processes of FMD V2 (Sections 2.1), summarizes important 
assumptions and ranges of validity (Section 2.2), and identifies requirements for coupling to PFLOTRAN 
(Section 2.3).  

2.1 Features and Processes 
The features and processes of FMD V2 are illustrated in Figure 2-1. Features include the following: 

 UO2 fuel surface. The UO2 2 
of noble metal particles (NMPs) (Jerden et al. 2014). 

 Corrosion layer. The corrosion layer is the accumulation of uranium minerals on the fuel surface 
resulting from chemical and electrochemical precipitation reactions. It is assumed to have 50% 
connected porosity and a tortuosity of 0.1 (Jerden et al. 2014). 

 Environmental water. This nearby water introduces aqueous reactants from the environment and 
provides a boundary condition for the model. The environmental aqueous reactants in the model 
are H2, O2, CO3

2-, and Fe2+. Each of these species either reacts with radiolytic species or is itself 
radiolytically active (e.g., CO3

2-). In addition, O2 is an important chemical oxidant in the model. 

 Interstitial water. This water fills the void between the fuel surface and the environmental water. 
Chemical reactions, radiolysis, and diffusion in both directions occur in this water. 
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Figure 2-1 Schematic diagram of FMD features and processes implemented in PFLOTRAN and included 
in FMD surrogate models. Diagram adapted from Jerden et al. (2017). 

The model domain depicted Figure 2-2 is one-dimensional (1D). It extends a total of 0.05 m from the fuel 
surface to the bulk water. This distance is divided into as many as 100 cells with increasing spatial 
resolution toward the cell boundaries. 

The processes in FMD V2 include (Jerden et al. 2014):  

 Production of hydrogen peroxide. Alpha radiolysis generates H2O2 (hydrogen peroxide) near the 
fuel surface. The amount of H2O2 generated each time step is a function of temperature, dose rate, 
radiolytic G-values, and the initial concentrations of aqueous species. H2O2 is the dominant fuel 
oxidant in anoxic repository environments.  

 Oxidative dissolution of the fuel matrix.  This type of dissolution oxidizes U(IV) at the surface of 
the UO2(s) matrix to U(VI), releasing the U(VI) to solution. It is calculated as a function of 
interfacial redox reaction kinetics (based on corrosion potentials) for both pure UO2(s) and for a 
fission product alloy phase referred to as the Noble Metal bearing Particles (NMP) or epsilon 
phase particles.  

 Chemical dissolution of the fuel matrix. This type of dissolution releases reduced uranium as 
U(IV) based on solubility-driven rate calculations at the interface. 
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 Other redox reactions at the fuel surface and the NMP surface. H2O2, O2, and H2 are kinetically 

oxidized/reduced at the fuel surface and at NMP phase surfaces. 

 Aqueous redox reactions. Reduction of H2O2, O2, and U(VI) (aq) and oxidation of H2 and Fe2+ are 
kinetically controlled. 

 Precipitation (and dissolution) of uranium phases. Kinetically-driven precipitation (and 
dissolution) of solid U(IV) and U(VI) phases occur on the fuel surface generating a porous 
corrosion layer.  

 Complexation by carbonate. Carbonate from bulk solution reacts kinetically with uranium at the 
fuel surface and with uranium in the corrosion layer.  

 Diffusion. Aqueous reactants and products diffuse within the 1D domain. Diffusion is slower 
through the porosity of the corrosion layer. 

 Temperature dependence. An Arrhenius temperature dependence applies to all rate constants, 
mineral saturation concentrations, and diffusion coefficients. A linear temperature dependence 
applies to standard electrochemical potentials (Jerden et al. 2012). 

 

 

Figure 2-2 FMD process model domain 

The user-selected FMD V2 inputs describing fuel and environmental characteristics include: 

 UO2 fuel properties 

o Burnup (GWd/MTHM) 

o Decay time, i.e., the time interval between the end of reactor use and emplacement in the 
repository 

 Environmental concentrations of H2, O2, CO3
2-, and Fe2+ 

 Temperature 

The model calculates a dose rate (J/kg) at the fuel surface induced by the radiation field. The dose rate is a 
function of the fuel properties and relationships presented in Radulescu (2011). The code runs from time 
zero to 100,000 years with a uniform log10 temporal discretization.  

Outputs are calculated at each time step. They include: 

 Concentrations of UO2
2+, UO2(CO3)2

2-, UO2(aq), U(IV)(s), U(VI)(s), H2, O2, H2O2 , CO3
2-, and 

Fe2+ for each cell in the 1D domain 

 Corrosion layer thickness [L], calculated from the cumulative amount of uranium precipitation 
(50% porosity assumed) 

 UO2 fuel degradation rate [M/L2/T], calculated from the amount of fuel that reacts during the time 
step 
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2.2 Assumptions and Limitations 
The FMD process model relies on several assumptions. They include: 

 Fuel degradation in this model is exclusively due to the release of UO2 from the UO2 fuel matrix. 

 Radiolysis ef -dose. This assumption breaks down for out-of-reactor times 
less than 30 years prior to contact with environmental water (Buck et al. 2013). 

 -particles are assumed to have a penetration distance of 35 µm and a constant energy of 5.3 MeV 
over that distance (Jerden et al. 2012). 

 H2O2 (generated by radiolysis) and O2 (introduced at the environmental boundary and generated 
by the decomposition of H2O2) are the only oxidants in the system. 

 -
particles from generating radiolytic oxidants, and slows diffusion of reactants in the pores of the 
corrosion layer (Buck et al. 2013). 

 Cladding is not included in the model. 

 Fuel surface degradation is uniform. 

The ranges of input values over which the FMD model may be applied have not been fully explored. The 
ranges shown in Table 2-1 are theoretically valid. The ranges of concentrations of the environmental 
species are taken from documented example applications of the FMD process model or from personal 
communication from Jim Jerden (pers. email to Mariner, May 7, 2020 and June 16, 2020). Nearly all 
reactions in the FMD process model are kinetically controlled; therefore, combinations of aqueous species 
concentrations far from equilibrium are possible.  

Table 2-1 Theoretical FMD process model input ranges 

Parameter Minimum Maximum 

Initial Temp. (K) 298 473 

Burnup (GWd/MTHM) 20 90 

Environmental CO3
2- (mol/m3) 10-4 (10-7 mol/liter) 102 (10-1 mol/liter) 

Environmental O2 (mol/m3) 10-7 (10-10 mol/liter) 100 (10-3 mol/liter) 

Environmental Fe2+ (mol/m3) 10-3 (10-6 mol/liter) 10-2 (10-5 mol/liter) 

Environmental H2 (mol/m3) 10-7 (10-10 mol/liter) 100 (10-3 mol/liter) 

2.3 Coupling Requirements 
To couple the FMD process model w
Fortran. At each time step, PFLOTRAN calls the coupled FMD process model to obtain a new 
degradation rate. Coupling requires PFLOTRAN to keep track of the 1D chemical profiles across the 
domain from the previous time step for each breached waste package. Other inputs include temperature, 
time, and several environmental concentrations in the boundary cell.  

The specific requirements for implementation of the FMD process model in GDSA Framework are: 

Inputs. The coupled FMD model must read the following for each waste form of each breached waste 
package at each time step: 
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 From the coupled FMD process model 

o Fuel burnup (GWd/MTHM) 

o Fuel decay time (time between the end of reactor use and repository emplacement) 

o Fuel specific surface area 

o Environmental concentrations of H2, O2, CO3
2-, and SO4

2- near the fuel surface 

 A future option will be to obtain these concentrations from PFLOTRAN when 
PFLOTRAN is used to simulate reactive transport of these species. 

 From PFLOTRAN 

o Time of simulation 

o Time step length 

o Temperature near the fuel surface 

o Concentrations of UO2(s), UO3(s), UO4(s), H2O2, UO2
2+, UCO3

2-, UO2, CO3
2-, O2, Fe2+, 

and H2 in each cell of the 1D process model domain between the fuel surface and the 
bulk water from the previous time step 

Calculations. With these inputs, the coupled FMD process model must calculate at each time step: 

 Dose rate for the time step as a function of burnup, decay time, and time of simulation 

 Concentrations of UO2(s), UO3(s), UO4(s), H2O2, UO2
2+, UCO3

2-, UO2, CO3
2-, O2, Fe2+, and H2 in 

each cell of the 1D domain at the end of the time step 

Outputs. The coupled FMD process model must return to PFLOTRAN at each time step: 

 Fuel degradation rate (kg m-2 s-1)  

 Concentrations of UO2(s), UO3(s), UO4(s), H2O2, UO2
2+, UCO3

2-, UO2, CO3
2-, O2, Fe2+, and H2 in 

each cell of the 1D domain so that PFLOTRAN can store them for the next time step 
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3. FMD SURROGATE MODELS 
Three types of surrogate models were developed for the FMD process model  a polynomial regression 
surrogate, an artificial neural network (ANN) surrogate, and a k-Nearest Neighbors regressor (kNNr) 
surrogate (Mariner et al. 2019a). Of the two active learners (ANN and polynomial), the ANN surrogate 
performed better, so development of the polynomial surrogate was discontinued in FY 2020. 

This section describes the development of the ANN and kNNr surrogates in standalone mode. Generation 
of training data for these surrogates is described in Section 3.1. Sections 3.2 and 3.3 describe the 
development and accuracy of the standalone ANN and kNNr surrogates, respectively. The relative 
accuracy of these surrogates is compared in Section 3.4. 

3.1 Source Data 
The first step of this study was to use the standalone MATLAB version of the FMD model from 2018 to 
generate surrogate build and test data. The temporal discretization in each FMD execution (referred to as 

consisted of 101 logarithmically spaced (base 10) points from 0 to 105 years. We 
ran two Latin Hypercube Sampling (LHS) studies of 50,000 and 5,000 runs to create training/validation 
(  and test datasets, respectively. LHS is a stratified sampling 

-
than plain Monte Carlo sampling (Helton and Davis 2003). The six-dimensional sample space contained 
the following parameters: initial temperature, burnup, and the environmental concentrations of CO3

2-, O2, 
Fe2+, and H2. The probability distributions for each parameter are given in Table 3-1. The initial 
temperature (Kelvin) was a prescribed function of time (years) that exponentially decayed from an initial 
value to 298 K: 

 

There were three possible reasons to exclude a simulation run from the training or test sets. First, we 
removed simulations that failed to finish execution before a cutoff time of five minutes. Typical FMD 
model runs finish in less than a minute and runs that take much longer than that were often observed to 

, become stuck and never terminate). Second, some simulations produced a corrosion layer 
thickness that was greater than 5 cm, the size of the computational domain, and were deemed unphysical. 

- ee Figure 3-1). 
This behavior is unexpected and indicative of an issue in the process model (J. Jerden, personal 
communication). The specific exclusion criterion for stagnation was a change in the value of the quantity 
of interest (QoI) of less than ten percent between 104 and 105 years. Roughly half of the training and test 
sets simulations survived these filtering operations, which is a rather large amount of training data to 
discard. It is reasonable to assume that the accuracy of the surrogate will be degraded in regions were 
samples were removed. Quantifying this effect would be difficult, but it is a direction that warrants future 
investigation. 

Figure 3-2 through Figure 3-5 depict pairwise scatter plots and histograms of the input parameter 
distributions from the training set LHS study that were removed due to excess corrosion layer thickness 
(Figure 3-2), stagnation (Figure 3-3), excess simulation runtime (Figure 3-4), and the kept runs that made 
it into the training set (Figure 3-5). There are a few trends that can be observed from these plots. Excess 
corrosion layer thickness appears to be correlated with the concentration of CO3

2-. High concentrations of 
H2 are more likely to produce stagnation but are also more likely to finish before the five-minute cutoff 
than low concentrations. Lastly, the plot of kept runs shows that there are some gaps in the training set 
that would likely degrade surrogate accuracy in those regions. 
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Each kept FMD simulation run contributed 101 points to a surrogate training or test set corresponding to 
the time trace for the FMD run. The feature space for the surrogate models consisted of temperature, 
environmental concentrations of CO3

2-, O2, Fe2+, and H2, and the dose rate at the fuel surface (a function 
of burnup and time), and the QoI or target vector was the UO2 surface flux (also referred to as fuel 
dissolution rate). 

There were a few simulations that stagnated within the last 5 time points which lead to duplicate entries in 
the training/test sets. These duplicates were dropped from the training set to avoid biasing the surrogate 
model towards preferentially matching these points, but they were retained in the test set so that entire 
simulation runs could be compared to surrogate predictions. These duplicate points only consisted of ~ 
2% of the training set. The final sizes of the training and test sets were 2889913 and 292496 points, 
respectively.

 

Figure 3-1 Five examples of FMD simulation that displayed late-time stagnation. Runs like these were 
removed from the surrogate training and test datasets. 

We chose to focus on three error metrics in assessing the surrogate model predictions on the training, 
validation, and test sets: mean-squared error (MSE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE). The formulas for these are given below for reference in terms of model 
predictions  and truth values  : 
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Table 3-1 FMD process model input parameter ranges for surrogate training and test data LHS 

Parameter Minimum Maximum Distribution 

Initial Temp. (K) 298 393 Uniform 

Burnup (GWd/MTHM) 20 70 Uniform 

Environmental CO3
2- (mol/m3) 10-4 (10-7 mol/liter) 10-1 (10-4 mol/liter) Log-uniform 

Environmental O2 (mol/m3) 10-7 (10-10 mol/liter) 10-3 (10-6 mol/liter) Log-uniform 

Environmental Fe2+ (mol/m3) 10-3 (10-6 mol/liter) 10-2 (10-5 mol/liter) Log-uniform 

Environmental H2 (mol/m3) 10-7 (10-10 mol/liter) 10-1 (10-4 mol/liter) Log-uniform 
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Figure 3-2 Parameter inputs that were removed due to corrosion layer thickness larger than the 
computational domain size of 5 cm. The concentration of CO3

2- is correlated with the probability 
of exclusion. 
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Figure 3-3 Parameter inputs that were removed due stagnation at times greater than 10,000 years. There is 
a band in H2-burnup space where few runs tend to stagnate. Concentrations of H2 above 10-2 are 
more likely to result in stagnation than lower values. 
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Figure 3-4 Parameter inputs that were removed from the training set because the simulation failed to finish 
before a five-minute cutoff . Simulations with CO3

2- less 
than 10-2.5 and H2, O2, or Fe2+ greater than 10-2 all tended to make it past this filter. 
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Figure 3-5 Parameter inputs for the training set after all three removal operations. Coverage appears 
mostly uniform with notable exceptions visible in H2-CO3

2- and H2-initial temperature space. 
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3.2 Artificial Neural Network (ANN) 
Neural network models are commonly employed by the machine learning community for regression and 
classification problems. 
essentially weighted combinations of (usually simple) nonlinear functions. One motivation for the 
development of neural networks (Rasmussen and Williams 2006, Pedregosa et al. 2011, Ben-David and 
Shalev-Shwartz 2014) was to create a regression approach for complex functions that avoids the 
combinatorial growth of the feature space that occurs in polynomial regression models. 

 

 

Figure 3-6 A schematic of a single layer feed-forward neural network with 2 input features and 2 neurons 
in the hidden layer 

Figure 3-6 contains a depiction of a single layer feed-forward neural network with two features and a 
 layer of neurons between 

the input and output layers, and the term feed-
connections between neurons, are pointing from the input layer to the output layer. The  nodes denote 

 terms that are independent of the features  and hidden layer 
of a network is defined as the number of hidden layers. So-
two hidden layers (and often more), while networks that contain only a few layers are described as 

 

The inputs to a neuron are scaled by their corresponding weights  (which also includes the bias term 
for convenience)  The index denotes the 
layer in the network and  the node or bias term in a given layer. In this work we use the popular rectified 
linear unit (ReLU) activation function, which is zero for an input less than zero and equal to the input 
otherwise. The output of each neuron in the final hidden layer is weighted and summed at the output node 
to produce the model prediction. In regression (as opposed to classification) neural networks there is 
typically no activation function applied at the output node. 
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The process of training a neural network involves minimizing a loss function that depends on the weights 
and biases (blue arrows in Figure 3-6). In this work we utilize a mean absolute error (MAE) loss 
function: 

 

where  denotes the number of data points in the training set and  is the neural network 
prediction for features  with corresponding QoI value . All of features and QoI were log10-
transformed prior to training save for temperature, as they are strictly positive and vary over orders of 
magnitude. The features were also standardized to have zero mean and unit variance prior to training. 
MAE was chosen as the loss metric for training because it less sensitive to outliers than mean squared 
error (MSE). We used the optimization algorithm RMSprop (Tieleman and Hinton 2012) to minimize (6) 
and terminated the algorithm after the improvement on the training set with additional iterations began to 
significantly diminish, which occurred around fifty epochs (an epoch is a single pass of RMSprop through 
the entire training set) as shown in Figure 3-7. 

 

Figure 3-7 Example of convergence of the ANN training optimization algorithm RMSprop. The curve 
flattens out around 50 epochs. 
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3.2.1 Development 

Although feed-forward neural networks are among the simplest neural network architectures, there are 
still a multitude of possible model designs. We decided to keep the number of hidden neurons in each 
layer constant (powers of 2 from 8 to 256) and considered a maximum of eight hidden layers during the 
model construction phase. Cross-validation (CV) learning curves were used to inform the selection of the 
network architecture and determine if the amount of training data was adequate for the neural network 
models. 

K-fold cross-validation is a procedure used to assess surrogate accuracy or generalization error using a 
single dataset (Hastie et al. 2009). K non-overlapping validation data subsets of approximately equal size 
are randomly selected from a build dataset (i.e., the training set or a fixed subset of it). For each of these 
partitions, a surrogate model is built using the remaining fraction of the original dataset and its error on 
the validation set computed. The CV score or error is the average validation error over the K folds. In this 
work we chose K = 5 and used MAE in the log10-transformed space as the CV error metric (same as the 
ANN loss function). 

Learning curves are plots of an error metric against the size of a training dataset (Murphy 2012). They are 
used to determine how the amount of training data affects surrogate accuracy. Figure 3-8 and Figure 3-9 
depict learning curves for the CV error from neural networks with 64 nodes per layer and varying network 
depths (Figure 3-8), and two-layer networks with varying amounts of nodes per layer (Figure 3-9). In 
networks with more than one layer there was little variation in the CV score with the size of the cross-
validation set. This observation suggests that the amount of training data was sufficient, and the chances 
of improving the surrogate by increasing the size of the training set are slim. 

The results in Figure 3-8 and Figure 3-9 show that the single layer networks were considerably less 
accurate than deeper networks. Further, the CV learning curves suggest that a network with two hidden 
layers and 64 nodes per layer is the smallest network architecture with respect to number of parameters 
that achieves the minimum CV errors predicted by the best-performing models, so we selected this 
architecture for the ANN surrogate model. This model contains 4673 parameters (weights and bias terms). 
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Figure 3-8 There is a significant difference in cross-validation results (mean CV scores) between single and 
multilayer networks with 64 nodes in each layer. The deep networks (networks with two or 
more hidden layers), produced similar errors that changed minimally as the size of the training 
set was increased. 
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Figure 3-9 Mean CV scores generally drop as the number of nodes in each layer are increased, but returns 
are greatly diminished after 64 nodes per layer. Similar findings were observed for a network 
with four hidden layers and varying amounts of nodes per layer. 

3.2.2 Accuracy 

After determining the architecture of the network, we trained the ANN on the entire training set and 
computed its predictions on the test set. Figure 3-10 shows one hundred randomly selected surrogate 
prediction and test data traces from the FMD model, and Figure 3-11 displays the two best, worst, and 
average predictions with respect to MAPE for a given simulation trace from the test set (i.e., -
MAPE). Figure 3-12 contains histograms of the per-run error metric. Most of the ANN predictions have a 
per-run MAPE less than 100% although there are some outliers. 

One avenue for improvement of the ANN surrogate would be consideration of more complicated network 
architectures although there is no guarantee that this would be fruitful. Alternatively, diagnosing why the 
FMD model is stagnating, producing excess corrosion layer thickness, or not finishing in a timely manner, 
and addressing these issues would be helpful because it would remove the gaps caused by the filtering 
procedures in the training set which would likely improve prediction accuracy in those regions of feature 
space. 
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Figure 3-10 One hundred randomly-selected truth-prediction simulation trace pairs from the test set 
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Figure 3-11 Individual truth-prediction pairs for the ANN surrogate 
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Figure 3-12 Distributions of the per-run (i.e., per FMD simulation trace) error metrics for the test set 
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3.3 K Nearest Neighbors Regression (kNNr) 
This section describes the process of developing and tuning a surrogate model based on the k-nearest 
neighbor regression (kNNr) algorithm for coupling with the Fortran-based, state-of-the-art massively 
parallel code called PFLOTRAN in support of nuclear waste repository analysis.  The process of coupling 
the model is described in a subsequent section. Recently, the feasibility of achieving significant speedup 
with limited loss of accuracy was demonstrated by precomputing a large number of states and 
implementing a fast surrogate model using a k-nearest neighbors approach (Mariner et al. 2019a). By 
identifying the nearest points in the precomputed data and interpolating and returning a corresponding 
uranium oxide degradation rate, the kNNr model functions as a type of high speed look up table and FMD 
surrogate model.  To support production analysis, the kNNr FMD surrogate model must be coupled to the 
massively parallel subsurface flow and reactive transport code, PFLOTRAN, so that PFLOTRAN can 
repeatedly interrogate the kNNr surrogate UO2 values. To effectively balance the need for both speed and 
accuracy, the kNNr model hyperparameters, such as the amount of training data and the number of nearest 
neighbors, must be properly tuned. This section addresses the selection and adaptation of a Fortran-based 
kNNr module, initial hyperparameter tuning studies, and the subsequent successful demonstration of 
coupling the tunable module with PFLOTRAN.  

The kNNr (Ben-David and Shalev-Shwartz 2014) is a supervised, non-parametric machine learning 
method that, unlike polynomial regression or neural networks, does not re-express the data in any way in 
order to make predictions. In contrast to the Artificial Neural Network (ANN) approach, which employs 
active learners, the k-Nearest Neighbors regressor is a lazy learner that tabulates data points inside of a 
domain X with labels y to the end of using those values for predictions. This makes the kNNr highly 
interpretable, as no intermediate hypothesis selection process on the parameters is undertaken. Instead, the 

ls of the  
nearest neighbors of this new point, where  is fixed (Figure 3-13). The definition of nearest depends 

on the metric function used, though a typical choice is the Minkowski metric  with 
. The case of  is the popular Euclidean metric, whereas   gives the Manhattan distance. 

The tabulation of data points can be implemented with a matrix representing entries in a table. However, 
this is less efficient than modern tabulation methods like the k-d Tree or the Ball Tree (Pedregosa, 
Varoquaux et al. 2011). The actual calculation of the predicted value need not be a uniform average. An 
inverse of the distance to each neighbor may be used to determine how influential that neighbor is in the 
final calculation of the weighted average. 

One of the attractive features of kNNr is that it makes predictions based on local information only, and 
therefore does not require global smoothness over the input space. On the other hand, the approach 
requires a sufficiently dense table to get good predictive accuracy, and the cost of table look-ups increases 
as the table density increases. 
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Figure 3-13 While k-nearest neighbors is often thought of as a classification algorithm, it is also used 
h a 

selected number of nearest neighboring data points. In the one-dimensional examples above, the 
top chart shows the predictions obtained by averaging five nearest neighbors to interpolate 
missing values.  In the lower plot, the interpolation weights the five neighbors based on the 
inverse of their distance to desired, missing value.  In this case, parameter selections appear to 
overfit the predictions to the data.  This image is from the scikit-learn documentation at 
https://scikit-learn.org/stable/auto_examples/neighbors/plot_regression.html  

3.3.1 Development and Hyper-Parameter Tuning 

To demonstrate the feasibility of coupling kNNr to PFLOTRAN for production computing, an open 
source, Fortran implementation of kNNr developed for high speed computing was taken through the 
initial stages of modification, tuning and coupling to PFLOTRAN for FMD surrogate modeling. As 
detailed below, we employed three versions of kNNr: a Python kNNr version for rapid prototyping of 
features and parameter tuning, a standalone version of the production Fortran kNNr for feature 
improvements and verification testing, and the production Fortran version of kNNr coupled to 
PFLOTRAN. The priority was demonstrating the feasibility of the surrogate model coupling rather than 
upgrading the Fortran code to include all desired features for optimal accuracy. The hyperparameter 
tuning effort focused on narrowing the parameter and feature selections to those yielding a balance of 
speed and accuracy while being implementable under the constraints provided by the production code 
development process and the limitations of the Fortran kNNr module. A standalone version of the 
production kNNr was split off to assess expected speed performance in production.  With the KDTREE 2 
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limited in parameter options and the production version difficult to modify and analyze, changes to 
hyperparameters were made judiciously to respect the project timeline and retain focus on the priority of 
assessing the feasibility of coupling.  The use of the three matching kNNr versions enabled the successful 
demonstration of coupling with PFLOTRAN for production and the offline development of 
hyperparameter tunings that balanced both expected production speed with regression accuracy. 
Verification of the agreement of the Python kNNr and Fortran kNNr was performed by running both with 
the same datasets and hyperparameters and comparing the resulting predictions. Further work to improve 
the production algorithm and hyperparameter tuning are discussed in the future work section.  

 

The rapid prototyping in Python performed last year continued using a corresponding kNNr model 
implemented with the Python Scikit-Learn module (Pedregosa et al. 2011).  Scikit-Learn offers many, 
built-in features not available in Fortran for tuning hyperparameters and calculating prediction accuracy. 
The standalone Fortran and Python versions were used in tandem offline with the Fortran version for 
informing computational and timing costs and the corresponding Python-based kNNr used for broader 
hyperparameter tuning. Verification testing confirmed that the Fortran and Python versions were 
functioning compatibly.   

 

The central challenge was to find or build a Fortran kNNr module and couple it with PFLOTRAN with 
the lessons learned from the Python based prototype. An open source module called KDTREE 2 (Kennel 
2004) offered a Fortran version built for speed with a limited but adequate set of kNNr features for testing 
the feasibility of the approach. The Fortran KDTREE 2 and corresponding Python Scikit-Learn 
implementations were made as similar as possible but were not identical. Both did use the same 
hyperparameters and datasets. The KDTREE 2 library was formulated explicitly for fast execution in 
eventual, Fortran-based high-performance computing and made available as open source code.  More 
feature rich, k-nearest neighbor implementations exist in other programming languages, but a Fortran 
version was most desirable for coupling to the PFLOTRAN environment, so no wrapper or other 
potentially problematic joining code was needed.  Developed at the University of California, San Diego 

the implementation of the search methods, resulting in substantially higher computational efficiency (up 
to an order of magnitude faste -d data structure and 
search algorithms are the generalization of classical binary search trees to higher dimensional spaces, so 
that one may locate near neighbors to an example vector in O(logN) time instead of the brute-force O(N) 
time, with N being the size of the data base (Kennel 2004). The intended advantages of the code align 
well with the FMD use cases where the database is large, higher dimensional, and requires larger numbers 
of nearest 

book (Cormen et al. 2009).  The KDTREE 2 Github repository is forked by several developers with the 
master archived in 2009 here: https://github.com/jmhodges/kdtree2/tree/master/src-f90. 

The KDTREE 2 library as available on GitHub does miss some key features. For example, it did not come 
with any interpolation capabilities. As such, a function to provide inverse distance weighted averaging 
between the retrieved nearest neighbors was added. The code was also expanded to accept HDF5 binary 
data files. Further, the KDTREE 2 library only has the Euclidean distance metric available. As will be 
shown below, kNNr with the Manhattan distance metric performs better than the Euclidean metric. Due to 
time limitations, the Fortran code has not been enhanced with the Manhattan metric, but this is under 
consideration for future work. 
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Several, interdependent data conditioning, hyperparameter tuning and evaluation criteria can be 
considered: 

Data conditioning:  
 detection of erroneous data and outliers, in particular related to corrosion layer thickness and 

stalling computations,  
 de-duplication of the training points, and 

 normalization and/or standardization of the features and targets  

Hyperparameter tuning: 
 weighting of each nearest neighbor in the interpolation of the prediction 
 metric used to determine nearness of a neighbor in multidimensional space, e.g., Manhattan 

versus Euclidean versus Mahalanobis 
 number of nearest neighbors  

 size of the kNNr training set (percentage of all data to use in production)  

 choice of kNNr sub-algorithm, e.g., k-d Tree versus Ball Tree, as well as options such as tree 
sorting.   

Evaluation criteria: 
 accuracy of the resulting table on the test data set 

 time required to load the training set and  
 time taken to calculate a prediction. 

Up front, we decided to use inverse-distance weighted interpolation between the retrieved nearest 
neighbors for a query vector. Contrary to uniformly-weighted interpolation, inverse-distance weighted 
interpolation has the nice option that the kNNr prediction error is zero for points that are already in the 
database. In other words, the error on the training data is zero. Further, having the influence of a point 
decrease if it is further away from the query vector guards against severe accuracy degradation if the table 
lookup returns points that are very far away. Also, the choice of data partitioning algorithm (k-d Tree 
versus Ball Tree) had no impact on the accuracy results using the Python code. As such, all results shown 
below used the k-d Tree algorithm, which is the one provided by the Fortran KDTREE 2 code.  

 

As discussed in section 3.1 concerning source data, one step in the data conditioning was the removal of 
runs with unphysical corrosion layer thicknesses. Beyond that, we also pruned duplicates from the feature 
set for three reasons: First, we discovered that duplicates in the feature set cause KDTREE 2 to crash, and 
second, from an information theoretical point of view, duplicates do not provide any new information, and 
can bias the dataset by giving more weight to some feature combinations. Third, if there are duplicates 
between the training, validation, and testing data set, it will skew the accuracy measurements because 
kNNr with the inverse-distance weighted interpolation has no prediction errors for validation or testing 
points that are also in the training set. As such, the kNNr starts with the same set of candidate 2,889,913 
training points as the ANN, with each training point being the system state at a time point along the FMD 
MATLAB model trajectory. 

In terms of data transformations, recall that the kNNr works by finding the nearest training points to the 
query vector in six-dimensional space. Multidimensional distance calculations must account for the 
features having different scales as discussed and also different distribution functions. Different scale 
features result in some features swamping the distance calculation, but this can be remedied by 
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transforming all features to a common scale. Tightly clustered features with non-normal distributions 
result in limited discrimination between neighbor distances. Mariner et al. (2019a) demonstrated that 
taking the log10 transform of the features improves the outcome. It is also helpful to log10 transform the 
quantities of interest and perform the prediction and interpolation in the transformed space as shown in 
Table 3-2: 

Table 3-2 Mean Absolute Percentage Error (MAPE) is smaller if the QoI are log10 transformed  

250K Training Points / 60 Nearest Neighbors MAPE  MAE  MSE  
Fortran - log10(QoI) 78% 1.26e-03 5.95e-06 
Fortran - No log10 593% 1.68e-03 1.12e-05 

 

 

To determine the best combination of hyperparameters and to average over the noise induced by selecting 
random subsets of data, ensembles of tests were run varying the neighbor nearness metric, number of 
nearest neighbors, and amount of training data.  First, the available data was split into training and test 
data with the test data comprising approximately ten percent of all the data held in reserve for final 
accuracy testing of the selected hyperparameter combinations. The remaining 90% of the data was used 
for parameter studies. Note that it is not always a good idea to use all available training data as the 
training model in kNNr since using smaller training sets can result in faster performance. Balancing the 
potential accuracy of using large amounts of training data versus the speed advantages of smaller sets is 
part of the hyperparameter tuning. Since the size of the training data set impacts the accuracy of different 
numbers of nearest neighbors, they were addressed simultaneously. To balance the probabilistic effects of 
choosing training subsets at random (one might test really well and another poorly), ensembles were used 
and their statistics calculated. For each ensemble, a set of complete runs were set aside for validation and 
then randomly selected sets of training samples were selected without regard to which run they originated 
from. This approach should result in training sets best covering the dataspace rather than being confined 
to specific run data only. Each of these training sets constituted a model to which the features of the 
validation data were fed to make predictions.  The predictions were then compared with the true values of 
the validation data QoI or target values to compute pointwise, run averaged, and ensemble errors along 
with their statistics. The results were plotted as function of the distance metric and number of nearest 
neighbors in Figure 3-14 and Figure 3-15. These plots then informed decisions about hyperparameter 
choices for the coupled production runs.   

First, note that consistent with Mariner et al. (2019a), both Figure 3-14 and Figure 3-15 show smaller 
errors when using the Manhattan distance metric over the Euclidean metric, especially for the MAPE 
errors. However, this effect is not as large as others and can be offset somewhat by data conditioning.  In 
multidimensional datasets, the relative sizes of the features and their distributions must be accounted for.  
If not, larger scale features will dominate distance calculations and these effects are amplified when the 
Euclidean metric is used because it squares the feature by feature distance elements.  Many other potential 
distance metrics are possible and could be explored also.  The effects of metric choices can also be 
inhibited or accentuated by the way the data is conditioned such as through the log10 transformation.  
KDTREE 2 currently only offers the Euclidean metric and adding the capability for Manhattan distance 
would be a welcome modification as potential future work. 
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Figure 3-14 MSE, MAPE, and MAE errors plotted as a function of the number of nearest neighbors for 
ensembles of ten randomly selected training datasets varying in size. Plots show that errors are 
smaller with the use of the Manhattan distance metric over the Euclidean distance metric.  The 
impact of the number of nearest neighbors and training size sets on errors is more complex and 
depends on the size of the training data set. 
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Figure 3-15 MSE, MAPE, and MAE  errors plotted as a function of the number of training samples for 
select numbers of nearest neighbors used. Initially the errors decrease as more data points are 
added, but eventually the errors go back up, as is particularly evident in the MAPE metric. 
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The behavior of the kNNr prediction errors with respect to the number of training samples and the number 
of nearest neighbors used is somewhat counterintuitive. One would expect that increasing the number of 
training points would always reduce the error. However, as Figure 3-14 and Figure 3-15 show in the 
current case, more nearest neighbors are needed to get good accuracy as the number of training points 
increases. Our hypothesis is that this is connected to the nature of how the training data set was built. As 
explained in Section 3.1, the training data was sampled from time-trajectories of standalone fuel cask 
simulations for specified environmental conditions. As such, rather than having sample points that are 
fully randomly spread over the 6-dimensional feature space, we have clusters of data points, since the 
only features that vary within each of the standalone simulations are temperature and dose rate. As we 
increase the number of samples, more and more points from the same standalone simulations are retained 
in the training set, requiring more nearest neighbors to interpolate between in order to have sufficient 
amounts of data from runs with different environmental concentrations. This sampling approach will be 
revisited under future work. 

Using the existing training data set, two configurations were chosen and tested in ensembles against the 
test dataset previously held in reserve and the standalone Fortran version was set up with timers to 
determine which configuration to use in production. Note that the optimal configuration (in terms of 
accuracy) depends on the error metric used. Here, we based the meta-parameter selection on the MAPE 
metric, as this metric weighs the error on the prediction of small fluxes more equally to the errors in large 
fluxes. Based on the MAPE plots in Figure 3-15, there appears to be a balanced set of parameter choices 
providing low errors at 250,000 training samples with 60 nearest neighbors. The smaller training set and 
relatively few nearest neighbors provide computational speed advantages in terms of being quicker to 
load, sort and interrogate while offering workably low prediction errors based on the ensemble testing. 
Similarly, the pairing of 500,000 training points with 120 nearest neighbors approaches the error 
asymptote seen with the larger training point and nearest neighbor combinations. The error statistics and 
timing data based on the reserve test data for these two configurations are shown in Table 3-3.  Based on 
these results, the larger dataset delivers small improvements but at the cost of much more execution time, 
as illustrated in Figure 3-16. As such, a randomly chosen set of 250,000 training points, approximately ten 
percent of the original training set, with 60 nearest neighbors was used for the PFLOTRAN coupled 
demonstrations. 

Note, as mentioned earlier, the production version of KDTREE 2 was modified to read in training data in 
HDF5 format. The binary training data file loads in 0.0243 seconds compared to the text-based comma 
separated value (CSV) file, which requires 128 times longer to load in 3.12 seconds. The production 
version was programmed to load the tree once, keep it in memory and query it repeatedly for each target 
value. 

Table 3-3 Expected errors on the Test set of the two chosen kNNr configurations and their standard 
deviation over a set of 10 random replicas drawn from the training data.  The larger dataset 
results in slightly better accuracy but with a significant time penalty when evaluated over the 
test set. 

Configuration Test MSE Test MAE Test MAPE [%] Time (ms) 
250K / 60NN  (6.11  0.05) e-6 (1.269  0.002) e-3 79.1  .5 % 64 
500K / 120NN (5.80  0.02) e-6 (1.2487  0.0009) e-3 79.2  .6 % 188 
Percent Difference -5.07% -1.60% 0.126% 194% 
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Figure 3-16 Compute time for evaluating the test set as a function of the number of nearest neighbors used 
and the amount of training data. The configuration with 500,000 training points and 120 nearest 
neighbors is almost 3 times as expensive as 250,000 training points and 60 nearest neighbors. 

To verify that the Python and Fortran tabulation provided equivalent results, we used the same randomly 
selected training set to predict the test set with both the Python and the Fortran KDTREE 2 standalone 
codes. While the Python and Fortran results were not identical, they did match closely as shown in Table 
3-4, with the differences between the two being much smaller than the errors with respect to the test set. 
Figure 3-17 gives six representative samples comparing the Python and Fortran results along with the true 
values.  The two versions do not return identical predictions, but the differences are an order of magnitude 
or smaller than the errors with respect to the true trajectories. 

Table 3-4 Verification testing to ensure the Fortran code is equivalent to the Python prototype 

250K Training Points / 60 Nearest Neighbors MAPE  MAE  MSE  
Python  79% 1.27e-03 6.13e-06 
Fortran  78% 1.26e-03 5.95e-06 
Difference -0.60% -0.88% -2.92% 

 

The fact that the Python and Fortran kNNr implementations do not give identical results is not surprising 
given that they are totally independent implementations of the k-d Tree data partitioning and lookup 
approaches, as well as interpolation routines. However, as the differences between them is much smaller 
than their prediction errors, we feel confident that the Python code can be used as a flexible prototyping 
tool for hyperparameter tuning. Once the optimal configuration was determined, the Fortran code was 
used for all accuracy tests covered in the next section.  
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Figure 3-17 Samples of six runs of the Python and Fortran predictions along with the true values.  The two 
versions do not return identical predictions, but the differences are an order of magnitude or 
smaller than the errors with respect to the true values. 
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3.3.2 Accuracy 

To gain insights into the errors on the test set, one hundred random trajectories predicted with the 
250K/60NN kNNr configuration are compared to the true trajectories in Figure 3-18.  While some 
predictions appear to be working reasonably well, there are zones where performance is poor.  Looking 
more closely at the best, worst, and median predictions (on a per-run averaged basis) in Figure 3-19 
reveals runs with considerable errors.  Since kNNr is essentially a look up table, for these cases the 
algorithm must be operating in areas where it lacks the density of training data required. 

 

Figure 3-18 A random sampling of runs reveals that while some predictions are hitting the mark, others are 
not as accurate. 

  



Surrogate Model Development of Spent Fuel Degradation for Repository Performance Assessment  
34 September 2020

 

  

  

Figure 3-19 Plots of the best, median and worst kNNr runs by prediction mean absolute prediction error 
(MAPE) 
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To get a better feel for the error distributions, Figure 3-20 plots the histograms of the run-averaged MSE, 
MAPE, and MAE errors. When binning the errors themselves, as in the left column, the histogram shows 
a peak near zero, and then a long tail towards larger errors. By binning the 10-based log of the errors, we 
get a better insight into the behavior of the tails. Both the MSE and MAE error metrics show large 
secondary peaks in the error distributions. Future work will focus on these peaks and other outliers to see 
where the table does not perform well, and adjust the sampling strategy, distance metric, or data 
conditioning accordingly. 

  

  

  

Figure 3-20 Histogram plots of the kNNr prediction errors reveals a large set of predictions that are much 
less accurate. 
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3.4 Summary Comparison 
Table 3-5 compares the accuracy of ANN and kNNr surrogates on the test data set. For the data sets used 
here, the ANN method is consistently more accurate than the kNNr approach. Note also that the two 
kNNr configurations give nearly the same accuracy on the test set. As such, the 250K/60NN configuration 
is the one that will be used in the PFLOTRAN coupled production runs. 

Table 3-5 Values of the error metrics computed on the test set (and training set for the ANN) for the UO2 
, non-log10 transformed) space. The accuracy of the two kNNr 

models is nearly the same. Note that the error on the training data is zero for kNNr as we use 
inverse-distance weighted averaging so the table prediction is the same as the tabulated value at 
the query point. 

Surrogate Train MSE 
(mol/m2/yr)2 

Test MSE 
(mol/m2/yr)2 

Train MAE 
(mol/m2/yr) 

Test MAE 
(mol/m2/yr) 

Train MAPE Test MAPE 

ANN 3.73e-6 3.56e-6 9.69e-4 9.30e-4 41.7% 31.2% 

kNNr 250K / 60NN  N/A 5.95e-6 N/A 1.25e-3 N/A 78.4 % 

kNNr 500K / 120NN N/A 6.04e-6 N/A 1.26e-3 N/A 78.0 % 
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4. COUPLING FMD SURROGATES TO PFLOTRAN 
There are a few details that must be accounted for to achieve proper coupling between PFLOTRAN and 
the surrogate models. First, the temperature input to the surrogate must be evaluated at the waste package 
spatial location. The local environmental concentrations of CO3

2-, O2, Fe2+, and H2 must also be evaluated, 
but currently they remain constant over the simulation domain. Second, two unit conversions between 
PFLOTRAN and those expected by the surrogate are necessary: mol/liter to mol/m3 for concentrations 
and degrees Celsius to degrees Kelvin for temperature. Lastly, all of the surrogate features except dose 
rate are directly available from PFLOTRAN. Dose rate at the fuel surface is obtained by passing burnup, 
simulation time, and a decay time offset into a function that computes the dose rate at the fuel surface 
according to the formula in Radulescu (2011). 

Unlike the actual FMD process model, there is no notion of a time step in the surrogate models. Both of 
surrogates are a functional representation (i.e., a mapping) between the feature space and model output. 
There is no history-dependence and none of the features are rate-like quantities. This is a particularly 
attractive property of the surrogate models given the restrictive time discretization (log10 time increments) 
required by the FMD process model, which PFLOTRAN must adhere to for the FMD model to work 
correctly. If a surrogate model is used instead then PFLOTRAN is free to adaptively form the time 
discretization. 

Documentation for the PFLOTRAN implementation of the ANN surrogate can be found at https://doc-
dev.pflotran.org/theory_guide/pm_waste_form.html and https://doc-
dev.pflotran.org/user_guide/cards/gdsa/waste_form_general_card.html. 

4.1 ANN Surrogate 
There are two input parameters for the original FMD process model and the surrogates that are specific to 
these models (i.e., are not present in other, non-FMD process models). These include the burnup of the 
waste form in GWd/MTHM and the decay time that represents the age of the fuel prior to the beginning 
of the PFLOTRAN simulation. The decay time for the surrogate training and test sets was 100 years. This 
value was used in the demonstration problems in Section 5.  

The neural network coefficients are stored in a HDF5 file that must be present in the directory where the 
simulation is executed. This file can be found in $PFLOTRAN_SRC/regression_tests/ufd and is named 
fmdm_ann_coeffs.h5.  

The PFLOTRAN implementation of the ANN in pm_waste_form.F90 produces essentially the same input 
as its original Python form. Evidence of this is provided in the 52-waste package section where the output 

to the Python versions of each surrogate. 

4.2 kNNr Surrogate 
The input parameters to the kNNr coupled model in PFLOTRAN are similar to the ANN with a few 
additions. Under the MECHANISM card in PFLOTRAN, kNNr must be specified. Optional input 
parameters include number of nearest neighbors and epsilon value. The coupled model uses a default of 
seven nearest neighbors and the smallest positive real number that is non-zero for epsilon. If a query 
vector is found to be within epsilon of a value in the kNNr search tree, then the exact value is used rather 
than taking an inverse distance. The HDF5 input file must be named FMDM_knnr_data.h5 and located in 
the same folder as the input deck. An example can be found at $PFLOTRAN_SRC/regression_tests/ufd. 

The coupled model reads in a HDF5 file of the FMD generated featured data and formats the data into a 
kNNr search tree. At each time step, PFLOTRAN will call the coupled kNNr and input the state of a cask 
represented as a query vector that includes temperature, concentrations, and dose rate. The query vector is 
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then log transformed. The kNNr search tree is then used to find the k nearest neighbors and extract the 
quantities of interest. An inverse distance is used to take a weighted average of the quantities of interest in 
order to determine the final dissolution rate. The model defines a zero distance between quantities of 
interest as distances less than epsilon. At the end of the simulation, PFLOTRAN prints the amount of time 
spent in the kNNr surrogate model. The output of the coupled kNNr was compared to the coupled ANN 
surrogate model in PFLOTRAN for validation.  

A standalone Fortran version of the kNNr model was developed to test timing on nearest neighbors and 
compare to the PFLOTRAN coupled version of kNNr and standalone Python version. Values are hard 
coded for nearest neighbors, input file names, and epsilon but can be adjusted by the user. Output files for 
timing on the search tree and predicted versus true values for the dissolution rate are produced when the 
code is run. The standalone model can be found at: https://gitlab-ex.sandia.gov/bjdebus/parme/-
/tree/master/code/rosie_knnr.  
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5. PERFORMANCE OF COUPLED FMD SURROGATE MODELS 
The coupled surrogate models are demonstrated using two simulations. The first demonstration is a 
simple flow system involving 52 failed waste packages in a flow field (Section 5.1). The second is a full-
scale shale repository reference case simulation.  

The purpose of these simulations was to verify that the surrogates are coupled properly and to assess the 
computer time needed for the surrogate calculations relative to flow and transport calculations. Accuracy 
was also evaluated but was not the focus because the surrogates were not optimized for the narrow input 
ranges to which they were applied. 

5.1 52-WP Demonstration 
The 52-waste package (52-WP) problem was built in 2015 by Glenn Hammond. It was built to 
demonstrate his PFLOTRAN coupling of a new Fortran version of the FMD process model developed at 
Argonne National Laboratory (Jerden et al. 2015a, Mariner et al. 2015, Section 3.2.1). The purpose of the 
coupling was to include FMD processes in repository systems simulations.  

The 52-WP problem was re-simulated using the newly coupled ANN and kNNr surrogates. Section 5.1.1 
describes the model inputs, Section 5.1.2 presents and compares the model results and evaluates their 
speeds of computation, and Section 5.1.3 assesses whether the coupled surrogates are operating as 
expected. 

5.1.1 Inputs 

The 52-WP problem aims to demonstrate and verify the implementation of the ANN and kNNr surrogate 
models in PFLOTRAN as well as compare the numerical efficiency of each model. The model domain for 
this problem is 101 m (L) × 101 m (W) × 21 m (H) and contains 52 waste packages that are fully 
breached at the start of the simulation such that all fuel is exposed to groundwater. This simulation is 
isothermal at 25 C and has a simulation period of 100 years. 

The RICHARDS mode solves the single-phase flow and isothermal system. Initially hydrostatic gradients 
of -7.21×10-4 Pa/m and -1×10-4 Pa/m are applied in the x- and y-axis directions, respectively. The 
inventory does not include actual radionuclides, but instead a pseudo free ion called  an 
initial concentration of 1×10-7 mol/liter and the following FMDM mechanism settings: 

Table 5-1 Surrogate mechanism setting for 52-WP simulations 

PFLOTRAN keyword Values 
MATRIX_DENSITY 19000 [kg/m3] 
SPECIFIC_SURFACE_AREA 0.001 [m2/g] 
BURNUP 60 [GWd/MTHM] 
DECAY_TIME 100 [year] 

 

For surrogate mechanisms, the concentrations of free ion are implemented as follows: 

Table 5-2 Concentrations of free ion (environmental species) 

Free ion Free Concentration [mol/m3] Free Concentration [mol/liter] 
O2 (aq) 1e-6 1e-9 
H2 (aq) 1e-2 1e-5 
Fe2+ 3e-3 3e-6 
CO3

2- 1.4e-2 1.4e-5 
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Figure 5-1 Concentration of Tracer at t = 100 years from 52-WP simulation with the ANN surrogate 
mechanism 

5.1.2 Results 

 

From the PFLOTRAN surrogate simulation, we obtain the waste form dissolution rate [kg/s] and 
remaining volume [m3] of each waste package at each time step when the waste form process model is 
called (with PFLOTRAN keyword "PRINT_MASS_BALANCE"). In the data spreadsheet with extension 
".wf", the dissolution rate is calculated for the whole time step and used during that time step which 
started at the time shown in the previous row. Therefore, applying the dissolution rate at a specific time 
step (ith time step) to the waste form volume from the previous time step (i-1th time step) gives the final 
volume at the specific time step (ith time step). 

To calculate the degradation rate of each waste package, the following equation is used: 

 

To convert the unit of the degradation rate, the following equation is used:  
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Calculated degradation rates for the two models are shown in Figure 5-2. These rates are verified and 
compared to expected values in Section 5.1.3. The rates from the ANN surrogate are close to expected 
rates, but the kNNr rates are far below expected rates (Section 5.1.3). The 52-WP problem interrogates a 
very small region of the entire training domain and only at the minimum temperature (25 C) of the 
training domain. For these conditions, the training dataset is sparse (Section 5.1.3) and the kNNr surrogate 
is clearly not optimized. A temperature of 25 C was used to be consistent with the 52-WP simulation 
performed in 2015 using the coupled FMD process model. Future 52-WP simulations should use a higher 
temperature to be more consistent with the dose rate of spent fuel at early time. 

 

 

Figure 5-2 ANN and kNNr surrogate calculations of the waste form degradation rate expressed in two 
different units (a) and (c) and the resulting waste form volume (b) over time 
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The surrogate model simulations of the 52-WP problem ran on 4 processors. Table 5-3 shows the speed 
comparison for the problem using the ANN surrogate, kNNr surrogate, and coupled FMD process model 
for time spent in the flow, transport, and waste form computations. The time spent in the waste form 
computations in the ANN and kNNr surrogate model simulations is only a small fraction of the time spent 
on flow and transport calculations. This result is very different from what happens using the directly-
coupled FMD process model. Time spent on waste form calculations using the coupled FMD process 
model is more than three orders of magnitude higher than for the surrogate model simulations. The 
original 52-waste package problem, simulated in 2015 using the coupled FMD process model, is 
documented in Mariner et al. (2015, Section 3.2.1). 

Table 5-3 Speed comparison of 52-waste package simulations with ANN and kNNr surrogate mechanisms 

  
  

Time consumed [s] 
ANN FMD  kNNr FMD  

(250k training) 
Coupled FMD Process Model 
(Mariner et al. 2019b) 

Flow 61.0 60.3 128 
Transport 147.8 117.6 244 
Waste Form 0.05 0.54 1522 

5.1.3 Surrogates Implementation Verification 

The waste form output 
dissolution rate (top panel), waste form volume (middle panel) shown in Figure 5-2. The bottom panel, 

an be computed according to equation (6), and is the output of the surrogate models. 
The correspondence between the PFLOTRAN implementation of the surrogates compared to their 
original Python versions can be quantified by comparing the back-calculated degradation rate to the 
output of the Python implementations given the inputs from the 52-WP problem. 

One wrinkle in the calculation of degradation rate from the waste form file arises in temporal ordering of 
effective dissolution rate and waste form volume in the file. If 
index (or equivalently line number) in the waste form output file within a given line the following 
quantities are written as: simulation_time[n], effective_dissolution_rate[n-1], volume[n]. The 
effective_dissolution_rate[n] is computed using volume[n] and degradation_rate[n] (i.e., all from the same 
time step). The effective_dissolution_rate[n] quantity takes into account specific surface area, volume, 
etc. according to equation (6). These indexing differences must be accounted for to correctly compute the 
degradation rate for a given point in time. 

Figure 5-3 shows the degradation rates computed from the waste form files and compares them to the 
output of the MATLAB FMD code generated using the same inputs. There is a noticeable discrepancy 
between the predictions of the surrogate models and FMD process model. The most likely reason for this 
is the iso-thermal nature (temperature equal to 298.15 K) of the 52-WP problem. The temperature 
function in the training data set typically began at temperatures up to 398 K and decayed over time to 298 
K. It is probable that the training dataset does not contain many points with near-298 K temperatures at 
early (less than one hundred years) times.  

Alternatively, the inputs to the 52-WP problem could be in a region of the input space where the surrogate 
models are not accurate. The training domain for the surrogates is fairly wide in terms of possible inputs 
(notably with respect to concentration ranges), and varying accuracy across the input space is a price paid 
for this range of applicability. Surrogates that are more accurate for the inputs in the 52-WP problem 
could be constructed by narrowing the concentration ranges (or fixing) to the values used by this 
demonstration problem, but then the surrogates would only be valid for this narrow case. In other words, 
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prediction accuracy would likely be degraded for inputs that our current surrogates provide accurate 
estimates for. 

Lastly, Figure 5-4 and Figure 5-5 display the percent difference between the back-calculated degradation 
rate from the waste form files from PFLOTRAN and the standalone Python ve to 
the Python calculations. The differences between the versions for the ANN are within the range expected 
by the limited precision (around nine digits) of the waste form and MATLAB FMD (used in model 
training) file outputs. The kNNr implementations contain more variation, and this can be attributed to the 
different codes used in Python and Fortran versions for k-d Tree tabulation, as discussed in Section 3.3.1. 
While the correspondence is not exact, these results do provide a degree of confidence in the correctness 
of the PFLOTRAN implementations. 

 

 

Figure 5-3 Comparison between the predictions from the surrogate models and original FMD process 
model for the inputs used in the 52-WP problem 
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Figure 5-4 ANN prediction differences between standalone Python version and version used in the 52-WP 
simulation 
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Figure 5-5 kNNr prediction differences between standalone Python version and version used in 52-WP 
simulation. The smoothness of this error trajectory suggests that points from only a few 
trajectories were used as the nearest neighbors to the actual condition. 

5.2 Shale Repository Demonstration 
This demonstration exercises the surrogate models in the shale repository system. The shale repository 
simulation includes (Sevougian et al. 2019):  

 Natural and engineered barrier system in a shale formation 

 24-PWR and 37-PWR waste packages 

 Inventory of radionuclides and waste forms used in the 2019 PA simulation model 

5.2.1 Inputs 

The model domain is 7215 m (L) × 2055 m (W) × 1200 m (H), long enough to implement observation 
points 5000 m down-gradient of the repository in the x-axis direction. The numerical grid contains 9.88 
million cells, of which approximately 4.6 million are the finer cells in and around the repository. The 
repository is discretized into volumetric cells with size of 5 m (L) × 5 m (W) × 5 m (H) while most of 
other regions are discretized into 15 m (L) × 15 m (W) × 15 m (H) cells. 

Initial pressure and temperature fields represent geothermal temperature and hydrostatic pressure 
gradients in a vertical direction (positive y-axis direction) by applying a liquid flux of 0 m/s and an energy 
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flux of 60 mW/m2 to the bottom and atmospheric pressure and 10 C of temperature at the top boundary. 
Pressure at the top decreases from west to east (positive x-axis direction) with a head gradient of -0.0013 
m/m. Initially, unsaturated conditions (0.7 of gas phase saturation) are applied in the disposal drifts, 
hallways, and shafts, and concentrations of all radionuclides in all cells are 10-21 mol/liter. 

The symmetry boundary condition is applied to the south face (positive zx-face) whereas other boundaries 
have constant pressure and temperature. Radionuclide concentrations are 10-21 mol/liter at the upstream 
boundary and zero at the outflow boundaries. The simulation runs to 106 years. 

This field-scale model simulates waste package degradation, waste form dissolution, equilibrium-
controlled radionuclide sorption, precipitation/dissolution, radioactive decay and ingrowth in all phases, 
and multi-physical coupling of heat transfer, fluid flow and radionuclide transport. 

 

 

Figure 5-6 Model domain of the shale repository system 

 

The nuclear waste repository is located at depth of 405 m within the shale formation. The stratigraphic 
units of the layered system are shown in Figure 5-6 and the material properties are given in Table 5-4. 

In this modeling study, the disturbed rock zone (DRZ) is defined manually by assuming 10 times larger 
permeability than that of the host rock to consider the changes in rock properties adjacent to the 
engineered barrier system. 
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Table 5-4 Material properties for the shale repository system model 

  Host 
Shale 

Upper 
sandstone 
(sandstone1) 

Silty 
shale 
(silt) 

Limestone 
(Limestone) 

Lower 
shale 
(shale1) 

Lower 
sandstone 
(sandstone0) 

Bottom 
shale  
(shale0) 

Location [m] 
(Domain top at 
1200 m and 
bottom at 0 m) 

  1140-1200 990-
1035 

645-690 300-645 255-300 0-255 

Permeability 
[m2] 

1e-19 1e-13 1e-17 1e-14 1e-20 1e-13 1e-20 

Porosity  0.2 0.2 0.2 0.1 0.1 0.2 0.1 
Density[kg/m3] 2700 2700 2700 2700 2700 2700 2700 
Heat capacity 830 830 830 830 830 830 830 
Saturated 
thermal 
conductivity 
[W/m/K] 

1.2 3.1 1.4 2.6 1.2 3.1 1.2 

Dry thermal 
conductivity 
[W/m/K] 

0.6 1 0.8 1 0.6 1 0.6 

Liquid residual 
saturation 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Gas residual 
saturation 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Saturation 
function 

Van Genutchen function 

alpha [Pa-1] 6.67e-7 1e-4 6.67e-7 1e-4 6.67e-7 1e-4 6.67e-7 
m  0.333 0.5 0.333 0.5 0.333 0.5 0.333 

 

The shale reference case implements 1575 24-PWR and 1000 37-PWR waste packages consisting of 
stainless-steel canisters and overpacks. Note that only half of the waste packages are modeled due to the 
symmetry-domain setting. The radionuclide inventory at the time of emplacement and heat of decay as 
function of time are calculated via decay and ingrowth from the 5-year out of reactor (OoR) radionuclide 
inventories (Sevougian et al. 2019). Calculated values for 24-PWR waste packages assume an initial 
enrichment of 3.72 wt% 235U, 40 GWd/MTHM burn-up, and 100-year OoR surface storage prior to deep 
geologic disposal. Calculated values for 37-PWR waste packages assume an initial enrichment of 4.73 
wt% 235U, 60 GWd/MTHM burn-up, and 150-year OoR storage.  

The waste packages are modeled as cuboids (1.67 × 1.67 × 5 m3) to resolve gridding limits. The porosity 
of waste packages is set to 0.5, which is equal to the fraction of void space. Its permeability is set to 
1×10-16 m2, several orders of magnitude higher than that of the surrounding materials. 

The temperature-dependent degradation rate per year with a truncated log normal distribution (a mean 
of -4.5, a standard deviation of 0.5, and an upper truncation of -3.5 in log units) is implemented to 
calculate normalized remaining canister thickness (fractional thickness) at each time step.  
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Compacted bentonite, filling access drifts and shafts, was engineered to have low permeability and high 
sorption capacity by mixing 70% bentonite and 30% quartz sand for 24-PWR disposal and adding 15% 
graphite for 37-PWR disposal. 

Both buffer materials have a porosity of 0.35 and a permeability of 10-20 m2. The bentonite/sand buffer 
has a saturated thermal conductivity of 1.5 W/m/K and a dry thermal conductivity of 0.6 W/m/K whereas 
the bentonite/graphite buffer has 3.0 and 1.9 W/m/K, respectively. 

 

For the surrogate mechanism simulation, four environmental species are added to the chemical database 
and input file as follows: 

Table 5-5 Additional primary species for surrogate mechanism simulations 

  Ion size 
(a0) 

Charge 
(Z) 

Molar Weight 
(g/mol) 

Free Conc. 
(mol/m3) 

Free Conc. 
(mol/liter) 

O2 (aq) 3.0 0.0 31.9988 1e-6 1e-9 
H2 (aq) 3.0 0.0 2.0159 1e-2 1e-5 
Fe2+ 6.0 2.0 55.8470 3e-3 3e-6 
CO3

2- 4.5 -2.0 60.0092 1.4e-2 1.4e-5 
  

- RAN simulations. 

 

Table 5-6 Surrogate mechanism settings for the shale repository system model 

PFLOTRAN Keyword 24-PWR 37-PWR 
MATRIX_DENSITY 10970 [kg/m3] 10970 [kg/m3] 
SPECIFIC_SURFACE_AREA 0.001 [m2/g] 0.001 [m2/g] 
BURNUP 40 [GWd/MTHM] 60 [GWd/MTHM] 
DECAY_TIME 100 [year] 100 [year] 

5.2.2 Results 

 

The original shale reference case uses a simple fractional degradation rate (FDR) model for fuel matrix 
degradation. FDR specifies a rate of 10-7 yr-1 for the waste form matrix in this simulation. This model and 
this 10-7 yr-1 rate is used, for example, in the Swedish repository performance assessment model (SKB 
2006, Table 10-3). 

Figure 5-7 shows the time when each waste package breaches in the simulation and the waste form 
degradation rate history for each waste package. The yellow and orange lines are for the 37-PWR waste 
packages and the blue and green lines are for the cooler 24-PWR waste packages. The top and bottom 
graphs plot the fuel matrix degradation rate in units of kg/s and mol/m2/yr, respectively. Because a 
constant specific surface area is assumed (0.001 m2/g), the bottom graph shows that as soon as the waste 
package breaches, the fuel matrix degrades at a constant rate of approximately 3.7×10-7 mol/m2/yr for the 
remainder of the simulation. The middle graph tracks the remaining fuel matrix volume for each waste 
package. 
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Figure 5-7 FDR model results: (a) fuel matrix degradation rate (kg/s), (b) volume of remaining waste form 
(m3), and (c) specific degradation rate (mol/m2/yr) 

Figure 5-8 shows the same three graphs for the same shale reference case simulation, but instead of using 
the FDR fuel matrix degradation model, the ANN FMD surrogate model is used. The ANN surrogate 
calculates much higher fuel degradation rates than the FDR simulation, especially at early times. Because 
the surrogate emulates the FMD process model, the specific degradation rate (mol/m2/yr) is high at early 
times when the temperature (>100 C) and dose rate are high, and it decreases over time as temperature 
and dose rate decrease. These trends are expected and are a major advantage over the FDR model. Also, 
the rates for the 24-PWR waste packages are generally lower than the rates for the 37-PWR waste 
packages because of differences in temperature. ANN rates for both 24-PWR and 37-PWR converge after 
100,000 years to approximately 8×10-7 mol/m2/yr. 
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Figure 5-8 ANN FMD surrogate model results: (a) fuel matrix degradation rate (kg/s), (b) volume of 
remaining waste form (m3), and (c) specific degradation rate (mol/m2/yr) 

Figure 5-9 shows the same plots for shale reference case when the kNNr surrogate model is used. The 
results show similar trends in degradation rates (high rates upon waste package breach and then gradual 
decreases). The maximum value of the specific degradation rate (~1×10-4 mol/m2/yr) is considerably 
lower than the maximum specific degradation rate predicted by the ANN surrogate. The value over time 
converges to 8×10-7 mol/m2/yr as observed in the ANN surrogate model. 

The lower degradation rates predicted by the kNNr surrogate relative to the ANN surrogate at early time 
is similar to what was observed in the 52-WP problem. Further work is needed to identify specific waste 
packages and their temperature histories to determine expected fuel matrix degradation rates for those 
waste packages. That information is needed to compare to the predictions by the ANN and kNNr 
surrogates for the waste packages. 
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Figure 5-9 kNNr FMD surrogate model results using the 250k training input data: (a) fuel matrix 
degradation rate (kg/s), (b) volume of remaining waste form (m3), and (c) specific degradation 
rate (mol/m2/yr) 

 

The shale repository system simulations ran on 1024 processors. Table 5-7 shows the speed comparison 
of surrogate model simulations. 

Table 5-7 Speed comparison of the shale repository system simulations 

  Time consumed [s] 
  ANN FMDM kNNr FMDM (250k training) 
Flow 26574 26275 
Transport 27329 27224 
Waste Form 281 334 

 

As in the 52-WP problem, the ANN surrogate model consumes less time than the kNNr surrogate, but 
each surrogate consumes very little time relative to flow and transport. Times spent on waste form 
calculations relative to the total time spent on flow and transport calculations were 0.5% and 0.6% for 
ANN and kNNr, respectively. Based on the speed comparisons in the 52-WP problem, if the shale case 



Surrogate Model Development of Spent Fuel Degradation for Repository Performance Assessment  
52 September 2020

 
had been run using the coupled FMD process model, the simulation of the FMD process model would 
have required much more time than flow and transport. 
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6. FUTURE WORK 
The results of the coupled PFLOTRAN simulations in Section 5 clearly show the potential of surrogate 
models to enable accounting for detailed Fuel Matrix Degradation dynamics while keeping the 
computational cost of reservoir simulations manageable. While this is a successful proof of concept, there 
is room for improvement in the surrogate accuracy. 

Based on the analysis of the demonstration cases, the area with the most potential for improvement is the 
sampling of the training data, both in terms of sampling range and sampling approach. As the 52-waste 
package case clearly shows, if the training data does not contain enough samples from the regime where 
the simulation takes place, the accuracy will be insufficient. A first step to address this will be to examine 
the areas where the current surrogate models do not have enough accuracy to see if those areas indeed 
correspond to regions with insufficient density in the training data. As mentioned earlier, one mitigation 
approach is to widen the sampling range for the training data, to get a more generally applicable surrogate 
(ANN or kNNr alike). Alternatively, one could also create smaller training data sets that are targeting a 
specific application, to get problem-specific surrogates that might have high accuracy and speed, but lack 
generality. 

In terms of the sampling scheme itself, the training data is currently generated from simulating the 
degradation of standalone fuel casks over time, under constant environmental conditions. As discussed in 
section 3.3.1, this results in a dataset of tightly clustered data points, one cluster per run, rather than a 
fully random sampling over the feature space. As the ANN uses a general non-linear functional 
representation, it is able to interpolate between those clusters. However, the kNNr approach would do 
better with a more random distribution of the training data, so that every query point is surrounded with a 
random cloud of training points. One approach is to generate standalone trajectories for a much larger set 
of input conditions than currently done, but only use a sparse subset of the available points in each run. 
This could also be generalized by only allowing new points to be added to the training data if they are 
sufficiently different from the existing points in the training data. 

The sampling enhancements discussed so far are likely to benefit both the ANN and kNNr approach. 
Some other approaches that may primarily benefit the kNNr approach are listed below: 

 Manhattan distance metric: As shown in section 3.3.1, the Manhattan distance tends to give 
better accuracy than the Euclidean metric for the current datasets, and could be added to the 
KDTREE 2 Fortran implementation. 

 Enhanced data conditioning: Rather than simple log10 transformation of the training data, 
kNNr may benefit from additional normalization so that all features are weighted appropriately 
when selecting the nearest neighbors. In this context, it may be beneficial to emphasize some 
features over others if they are more predictive for the Quantity of Interest. Note that data 
conditioning has a similar effect as the choice of the distance metric used for selecting the nearest 
neighbors. 

 Appropriate metrics for hyperparameter tuning: As discussed in section 3.3.1, the 
hyperparameters for kNNr were selected to minimize the MAPE error, as it weighs the accuracy 
on small fluxes more evenly than the MSE and MAE metrics. However, if it is most important to 
get large flux values predicted well, then selecting hyperparameters to minimize the MSE or 
MAE metrics may be better suited. 

 Online accuracy monitoring: With kNNr, we know that the prediction accuracy will decline the 
further the nearest neighbors are from the query point.  This could be used to assess during run-
time whether the kNNr results can be trusted. 
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7. CONCLUSIONS 
The Fuel Matrix Degradation (FMD) model calculates spent fuel degradation rates as a function of 
radiolysis, redox reactions, electrochemical reactions, alteration layer growth, and diffusion of reactants 
through the alteration layer. It is a complicated model requiring a large number of calculations and 
iterations at each time step. Because of this, repository simulations, which are already expensive, cannot 
directly include the FMD process model, especially when hundreds or thousands of waste packages 
breach. 

The FMD surrogate modeling work in this report was initiated based on the hypothesis that surrogate 
models can be developed from FMD process model training data to inexpensively provide accurate fuel 
matrix degradation rates in a repository simulation for each individual breached waste package in its own 
evolving environment at each time step. This report confirms that such surrogate models can be 
developed. It shows that an artificial neural network (ANN) surrogate and a k-Nearest Neighbors 
regressor (kNNr) surrogate can emulate the FMD process model with reasonable accuracy. It also 
demonstrates that these surrogates can run inexpensively in repository simulations for each breached 
waste package when there are thousands of waste packages. Having the ability to emulate spent fuel 
degradation in probabilistic PA simulations allows uncertainties in spent fuel dissolution to be propagated 
and sensitivities in FMD inputs to be quantified and ranked against other inputs. It is expected that the 
accuracy of the surrogates can be significantly improved in the future by targeting the ranges of 
application and by more evenly distributing the training data points within those ranges. 
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